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Abstract. The three-dimensional bimodal random-field Ising model is studied via a new finite temperature
numerical approach. The methods of Wang-Landau sampling and broad histogram are implemented in a
unified algorithm by using the N-fold version of the Wang-Landau algorithm. The simulations are performed
in dominant energy subspaces, determined by the recently developed critical minimum energy subspace
technique. The random-fields are obtained from a bimodal distribution, that is we consider the discrete
(±∆) case and the model is studied on cubic lattices with sizes 4 ≤ L ≤ 20. In order to extract information
for the relevant probability distributions of the specific heat and susceptibility peaks, large samples of
random-field realizations are generated. The general aspects of the model’s scaling behavior are discussed
and the process of averaging finite-size anomalies in random systems is re-examined under the prism of
the lack of self-averaging of the specific heat and susceptibility of the model.

PACS. 05.70.Jk Critical point phenomena – 64.60.Fr Equilibrium properties near critical points, critical
exponents – 75.10.Hk Classical spin models – 75.50.Lk Spin glasses and other random magnets

1 Introduction

The random-field Ising model (RFIM) [1] is one of the
most studied glassy magnetic models [2–4]. The 3D RFIM
consists of Ising spins Si on a simple cubic lattice, gov-
erned by the Hamiltonian:

H = −J
∑

<i,j>

SiSj −
∑

i

hiSi (1)

where J > 0 is the interaction constant and hi are
quenched random-fields, obtained from a bimodal distri-
bution P (hi) = 1

2δ(hi − ∆) + 1
2δ(hi + ∆). ∆ denotes the

disorder strength, also called randomness of the model. Al-
though nowadays it is believed that the phase transition
from the ordered to the disordered phase of the model is
of second-order, a complete set of critical exponents ful-
filling a widely accepted set of scaling relations has not
been established. In fact, there is a strong disagreement
in literature concerning the overall thermal and magnetic
behavior of the model [5,6]. This may be due to a mis-
taken comprehension of some theoretical concepts in ran-
dom systems, such as the concept of averaging that will
be discussed below.

The rest of the paper is laid out as follows. In Section 2
we present the numerical schemes utilized for the study of
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the RFIM. The process of averaging finite-size anomalies
in random systems and the significance and implications of
the non trivial property of the lack of self-averaging of the
specific heat and susceptibility of the model, are discussed
in Section 3. Finally, we summarize in Section 4.

2 Numerical techniques

Numerically the RFIM has been approached using tra-
ditional [7,8] but also more sophisticated Monte Carlo
techniques [9]. However, the nature of the model demands
enormous computer resources. Furthermore, in order to
get a good estimate of the mean properties of the sys-
tem, it is necessary to repeat the simulations for a large
number of realizations of the random-fields. Here, the nu-
merical procedure concentrates on the determination of
the density of states (DOS) G(E) of the model and on the
corresponding thermodynamic quantities.

For the application of the Wang-Landau (WL) algo-
rithm [10] in a multi-range approach we follow the N-fold
description of Schulz et al. [11]. The random walk is not
allowed to move outside of any particular subrange, and
we always increment the histogram H(E) → H(E) + 1
and the DOS G(E) → G(E) ∗ fj after a spin-flip trial.
Here, fj is the value of the WL modification factor f [10]
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at the jth iteration, in the process (f → f1/2) of reduc-
ing its value to 1, where the detailed balance condition
is satisfied. In all our simulations the control parameter
takes the initial value: fj=1 = e ≈ 2.71828..., while when
starting a new iteration it is changed according to the
sequence fj+1 =

√
fj , j = 1, 2, ..., 20 [10,12]. For the his-

togram flatness criterion we use a flatness level of 0.05.
The accumulation of numerical data for the application of
the broad histogram (BH) method of Oliveira et al. [13]
and also the updating of appropriate (E, M) histograms is
carried out in the final stage of the WL process, by using
the N-fold iteration j = 12–20 [14]. The approximation
of the DOS, in the last WL iteration, GWL(E), and the
high-level (j � 1) WL (E, M) histograms, HWL(E, M),
are then used to estimate the magnetic properties in a
temperature range, which is covered, by the restricted en-
ergy subspace (E1, E2) as:

〈Mn〉 =
∑

E〈Mn〉EG(E)e−βE

∑
E G(E)e−βE

∼=
∑

E∈(E1,E2)
〈Mn〉E,WLGWL(E)e−βE

∑
E∈(E1,E2)

GWL(E)e−βE
. (2)

The microcanonical averages 〈Mn〉E are obtained from
the HWL(E, M) histograms as:

〈Mn〉E ∼= 〈Mn〉E,WL ≡
∑

M

Mn HWL(E, M)
HWL(E)

HWL(E) =
∑

M

HWL(E, M) (3)

and the summation in M runs over all values generated
in the restricted energy subspace (E1, E2) [14]. Similarly
we obtain the microcanonical estimators necessary for the
application of the BH method, using the well-known broad
histogram equation [13]:

G(E)〈N(E, E + ∆En)〉E
= G(E + ∆En)〈N(E + ∆En, E)〉E+∆En (4)

where N(E, E + ∆En) is the number of possible spin flip
moves from a microstate of energy E to a microstate with
energy E + ∆En, which are known during the N-fold pro-
cess.

For a particular random-field realization the specific
heat and its peak are easily obtained with the help of the
usual statistical sums. The critical minimum energy sub-
space (CrMES) scheme [12,14] uses only a small but domi-
nant part (Ẽ−, Ẽ+) of the total energy space (Emin, Emax)
to determine the specific heat peaks. Let Ẽ denotes the
value of energy producing the maximum term in the par-
tition function at the pseudocritical temperature (corre-
sponding to the specific heat peak) and S(E) = lnG(E)
the microcanonical entropy. Then the CrMES approxima-

tion is defined by the following equations:

CL(Ẽ−, Ẽ+) = N−1T−2

×

⎧
⎪⎨

⎪⎩
Z̃−1

Ẽ+∑

Ẽ−

E2 exp [Φ̃(E)] −
⎛

⎝Z̃−1

Ẽ+∑

Ẽ−

E exp [Φ̃(E)]

⎞

⎠
2
⎫
⎪⎬

⎪⎭

(5)

Φ̃(E) = [S(E)−βE]−
[
S(Ẽ) − βẼ

]
, Z̃ =

Ẽ+∑

Ẽ−

exp [Φ̃(E)]

(6)
where (Ẽ−, Ẽ+) is the minimum dominant subrange, sat-
isfying the following accuracy criterion:

∣∣∣∣∣
CL(Ẽ−, Ẽ+)

CL(Emin, Emax)
− 1

∣∣∣∣∣ ≤ r (7)

with r = 10−6. Note that, the above accuracy is extremely
demanding compared to the statistical errors produced by
the DOS method (i.e. the WL method) and to the large
sample-to-sample fluctuations of the RFIM that will be
discussed below in Section 3.

Using an ensemble of macroscopic samples of size
L corresponding to different random-field realizations
we have applied the described scheme in a broad en-
ergy(magnetization) space (total CrME(M)S of the en-
semble) that covers the overlap of the dominant en-
ergy(magnetization) subspaces for all realizations of the
ensemble. This practice has the advantage that the ap-
proximation of the specific heat and susceptibility for a
particular random-field is accurate in a wide temperature
range, including its pseudocritical temperature. Despite
the strong fluctuations of the energy value correspond-
ing to the maximum term of the partition function Z, the
union of the CrME(M)S for large samples of random-fields
is, in any case, a quite small subspace.

3 Averaging finite-size anomalies.
Lack of self-averaging

For a disordered system one has to perform two distinct
kinds of averaging. Firstly, for each random-field realiza-
tion the usual thermal average has to be carried out and
secondly one must average over the distribution of the
random parameters. The latter makes it clear that large
ensembles of random-fields must be generated in order to
estimate properly the mean properties of the system. Fol-
lowing the methods described above in Section 2 the ther-
mal average for the specific heat is given by equation (5),
while the susceptibility χ reads as:

χ =
N

T

{〈M2〉 − 〈M〉2} (8)

with N = L3. Let Cm(T ) and χm(T ) denote the spe-
cific heat and susceptibility of a particular random-field
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Fig. 1. Finite-size behavior of the averages [C∗
m]av and [C]∗av

for the case ∆ = 2, for both the WL and BH methods used.
The error bars represent the sample-to-sample fluctuations (see
text). The behavior of [C]∗av appears as a random fluctuation
around the value 0.815, as shown by the dotted line.

realization m in an ensemble of M realizations (m =
1, 2, ..., M). The corresponding pseudocritical tempera-
tures T ∗

L(Cm(T )) and T ∗
L(χm(T )) depend on the particular

realization of the random-field and for large values of the
randomness ∆, they are strongly fluctuating quantities.
The locations of the specific heat and susceptibility peaks
may be then denoted by (C∗

m, T ∗
L,C;m) and (χ∗

m, T ∗
L,χ;m),

respectively.
In previous studies [7,8], the averaging process over

a large number of random-fields has been carried out on
the averaged curve of the specific heat or susceptibility,
without first raising the question of whether this averaged
curve is the proper statistical representative of the sys-
tem. Specifically, the following sample averages have been
considered for the specific heat and susceptibility [7,8]:

[C]av =
1
M

M∑

m=1

Cm(T ); [χ]av =
1
M

M∑

m=1

χm(T ). (9)

The finite-size scaling behavior of the peak of these aver-
aged curves was then studied by assuming that the max-
ima [C]∗av = ([C]av)∗ and [χ]∗av = ([χ]av)∗ obey power
laws (for details see Refs. [7,8]). Note that, these aver-
aged curves ([C]av and [χ]av) are very sensitive to the
property of self-averaging due to the fact that the corre-
sponding thermodynamic quantities are characterized by
broad distributions in the thermodynamic limit.

In this work, in addition to the above averaging ex-
pressions, we study the sample-averages of the individual
specific heat and susceptibility maxima, defined by:

[C∗
m]av =

1
M

M∑

m=1

C∗
m; [χ∗

m]av =
1
M

M∑

m=1

χ∗
m. (10)

These mean values, together with the corresponding peaks
of the averaged curves of equation (9), are shown in Fig-
ures 1, 2. In our simulations we used an ensemble of

Fig. 2. Finite-size behavior of the averages [χ∗
m]av and [χ]∗av

for the WL and BH methods, also for the case ∆ = 2.

M = 1000 random-field realizations for L ≤ 12 and
M = 500 for L = 14 − 20. To quantify the sample-to-
sample fluctuations of the specific heat (susceptibility)
peaks we define the standard deviation of C∗

m (χ∗
m), over a

sample of M random-field realizations as σ(C∗
m) (σ(χ∗

m)).
This important parameter will be illustrated in our figures
as error bars, but should not be in any case confused with
the existing statistical errors.

Figure 1 illustrates the finite-size behavior of the peaks
of the average [C∗

m]av and that of the averaged curve [C]∗av,
defined above for the case ∆ = 2 for the two methods em-
ployed, i.e. the WL and BH methods. As discussed above,
the error bars quantify the large sample-to-sample fluc-
tuations of the specific heat peaks for the two methods
employed (note that the error bars with the larger cap-
width always refer to the WL method). From Figure 1 it
is apparent that, while the sample mean averages [C∗

m]av

admits of finite-size scaling, the behavior of [C]∗av appears
as a random fluctuation around the value [C]∗av ≈ 0.815,
as shown by the dotted line in this figure. In analogy with
Figure 1, Figure 2 shows the corresponding susceptibility
quantities, also for the case ∆ = 2. Again, the sample-
to-sample fluctuations are very large and the behavior of
[χ]∗av is clearly distinct from that of [χ∗

m]av. Inspecting
Figures 1, 2 on a comparative basis we observe that the
deviations between the WL and BH methods are more
pronounced in the thermal case (Fig. 1) and their differ-
ence is noticeable for L = 20. This difference represents
the order of the statistical errors of our scheme. Although
these errors are still small compared to the sample-to-
sample fluctuations, they raise doubts whether the total
number of WL iterations (jfinal = 20) is sufficient for the
study of large lattice sizes.

From the discussion above, it is clear that when
studying random systems the only meaningful objects for
investigating the finite-size scaling behavior are the distri-
butions of various properties in ensembles of several real-
izations of the randomness. Hence, it is important to be
able to ascertain to what extent are the results obtained
from an ensemble of random realizations representative of
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Fig. 3. Temperature variation of the ratio R′
[Q]av

defined in
the text, for both the specific heat and susceptibility.

the general class to which the system belongs. The an-
swer hinges on the important issue of self-averaging. If a
quantity is not self-averaging, we talk about lack of self-
averaging and the process of increasing L does not im-
prove the statistics. In other words, the sample-to-sample
fluctuations remain large. The problem of self-averaging
in the 3D RFIM has been a matter of investigation over
the last years [15]. A common measure characterizing the
self-averaging property of a system based on the theory
of finite-size scaling has been discussed by Binder [16]
and has been used for the study of some random sys-
tems [17,18]. This measure inspects the behavior of a nor-
malized square width quantity, defined as:

RQ =
VQ

[Q]2
(11)

where VQ = [Q2] − [Q]2 is the sample-to-sample variance
of the average [Q]. Here, Q is used in respect of the spe-
cific heat C and the susceptibility χ. According to the
literature [16–18] when the ratio RQ tends to a constant,
the system is said to be non self-averaging and the corre-
sponding distribution (say P (Q)) does not become sharp
in the thermodynamic limit.

Using our notation we may define the ratio RQ for the
specific heat and susceptibility in two explicit forms, one
for the case of the averaged curve [Q]av:

R[C]av
=

V[C]av

([C]av)2
, R[χ]av

=
V[χ]av

([χ]av)2
(12)

and one for the case of the average [Q∗
m]av:

R[C∗
m]av

=
V[C∗

m]av

([C∗
m]av)2

=
(

σ(C∗
m)

[C∗
m]av

)2

,

R[χ∗
m]av

=
V[χ∗

m]av

([χ∗
m]av)2

=
(

σ(χ∗
m)

[χ∗
m]av

)2

. (13)

In Figure 3 we present the behavior of the ratio R′
[Q]av

=
R[Q]av

/R∗
[Q]av

, where R∗
[Q]av

= max{R[Q]av
} as a function

Fig. 4. Illustration of the ratio R[Q∗
m]av of the specific heat and

susceptibility, for both the WL and BH methods, for random-
ness ∆ = 2. Clear saturation to a limiting non-zero constant
value: R[C∗

m]av → 0.28 and R[χ∗
m]av → 0.57.

of the temperature T , for L = 16 and ∆ = 2. The solid line
corresponds to the specific heat (R′

[C]av
) while the dotted

line to the susceptibility (R′
[χ]av

). In this figure only the
results of the WL method are presented, since our inten-
tion was to identify the temperature variation of the non
self-averaging property of the averaged specific heat and
susceptibility defined in equation (9). Indeed, from Fig-
ure 3 we observe that for temperatures close to the criti-
cal, the ratio R[Q]av

is maximized indicating strongly non
self-averaging behavior for both quantities. In Figure 4 we
consider the behavior of the ratio R[Q∗

m]av
of the specific

heat (R[C∗
m]av

) and susceptibility (R[χ∗
m]av

) as a function
of the linear size L, for both the WL and BH methods.
Both ratios seem to tend to a constant non-zero value,
namely R[C∗

m]av
→ 0.28 and R[χ∗

m]av
→ 0.57, confirming

the above mentioned lack of self-averaging of the specific
heat and susceptibility of the model.

4 Summary and outlook

The numerical strategy applied in this paper enabled us to
perform extensive finite-temperature simulations and ex-
tract valuable information for the generic behavior of the
RFIM. It was shown that the various definitions of the
apparent finite-size anomalies may not be equivalent. Our
analysis revealed that the behavior of the mean [Q∗

m]av is
clearly distinct from that of [Q]∗av and that this is directly
connected to the lack of self-averaging of the model. More
work needs to be done towards this direction, so that the
subtle matter of self-averaging in the RFIM is fully clari-
fied and understood. One of our future plans, is the ver-
ification of the above results by studying the model for
larger lattice sizes and various randomness values. In any
case, the present study puts forward some new ideas and
an efficient unified implementation of the DOS methods,
suitable for the study of random systems.
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